Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Eur Heart J ; 43(Suppl 2), 2022.
Article in English | PubMed Central | ID: covidwho-2107415

ABSTRACT

Introduction: COVID-19 infection has been associated with increase arterial stiffness, endothelialdysfunction, and impairment in coronary and cardiac performance. Inflammation and oxidative stress have beensuggested as possible pathophysiological mechanisms leading to vascular and endothelial deregulation afterCOVID-19 infection. Purpose: The objective of our study is to evaluate premature alterations in arterial stiffness, endothelial,coronary, and myocardial function markers four months after SARS-CoV-2 infection. Methods: In a case-control prospective study, we included 70 patients 4 months after COVID-19 infection, 70 age- and sex-matched untreated hypertensive patients (positive control) and 70 healthy individuals. We measured (i) perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced endothelial glycocalyx thickness), (ii) flow-mediated dilatation (FMD), (iii) coronary flow reserve (CFR) by Doppler echocardiography, (iv) pulse wave velocity (PWV) and central systolic blood pressure (cSBP), (v) global left and right ventricular longitudinal strain (GLS), (vi) malondialdehyde (MDA), an oxidative stress marker, thrombomodulin and von Willebrand factor as endothelial biomarkers. Results: COVID-19 patients had similar CFR and FMD with hypertensives (2.48±0.41 vs 2.58±0.88, p=0.562, 5.86±2.82% vs 5.80±2.07%, p=0.872 respectively) but lower values than controls (3.42±0.65, p=0.0135, 9.06±2.11%, p=0.002 respectively). Compared to controls, both COVID-19 and hypertensives had greater PBR5–25 (2.07±0.15μm and 2.07±0.26μm p=0.8 vs 1.89±0.17μm, p=0.001), higher PWV, (12.09±2.50 vs 11.92±2.94, p=0.7 vs 10.04±1.80m/sec, p=0.036) increased cSBP (128.43±17.39 vs 135.17±16.83 vs 117.89±18.85) and impaired LV and RV GLS (−19.50±2.56% vs −19.23±2.67%, p=0.864 vs −21.98±1.51%, p=0.020 and −16.99±3.17% vs −18.63±3.20%, p=0.002 vs −20.51±2.28%, p<0.001). MDA and thrombomodulin were higher in COVID-19 patients than both hypertensives and controls (10.67±2.75 vs 1.76±0.30, p=0.003 vs 1.01±0.50nmole/L, p=0.001 and 3716.63±188.36 vs 3114.46±179.18, p=0.017 vs 2590.02±156.51pg/ml, p<0.001). COVID-19 patients displayed similar vWF values with hypertensives but higher compared with healthy controls (4018.03±474.31 vs 3756.65±293.28 vs 2079.33±855.10 ng/ml, p=0.718 and p=0.016 respectively). Conclusions: SARS-CoV-2 infection is associated with oxidative stress, endothelial and vascular dysfunction, which are linked to impaired longitudinal myocardial deformation 4 months after COVID-19 infection. Funding Acknowledgement: Type of funding sources: None.

2.
European Heart Journal Cardiovascular Imaging ; 23(SUPPL 1):i89, 2022.
Article in English | EMBASE | ID: covidwho-1795329

ABSTRACT

Aims: SARS-CoV-2 infection may lead to endothelial and vascular dysfunction. We investigated alterations of arterial stiffness, endothelial coronary and myocardial function markers four months after COVID-19 infection. Methods: In a case-control prospective study, we included 100 patients four months after COVID-19 infection, 50 age- and sex-matched healthy individuals. We measured a) pulse wave velocity (PWV), b) flow-mediated dilation (FMD) of brachial artery, c) coronary Flow Reserve (CFR) by Doppler echocardiography d) left ventricular (LV) global longitudinal strain (GLS), e) left ventricular myocardial work index, constructive work, wasted work and work efficiency and e) von-Willenbrand factor and thrombomodulin as endothelial biomarkers. Results: COVID-19 patients had lower CFR and FMD values than controls (2.39 ± 0.39 vs 3.31 ± 0.59, p = 0.0122, 5.12 ± 2.95% vs 8.12 ± 2.23%, p = 0.006 respectively). Compared to controls, COVID-19 patients had higher PWV (PWVc-f 12.32 ± 2.44 vs 10.11 ± 1.85 m/sec, p = 0.033) and impaired LV GLS (-19.11 ± 2.14% vs -20.41 ± 1.61%, p = 0.001). Compared to controls, COVID-19 patients had higher myocardial work index, and wasted work (2067.7 ± 325.9 mmHg% vs 1929.4 ± 312.7 mmHg%, p = 0.026, 104.6 ± 58.9 mmHg% vs 75.1 ± 52.6 mmHg%, p = 0.008, respectively), while myocardial efficiency was lower (94.8 ± 2.5% vs 96.06 ± 2.3%, p = 0.008). and thrombomodulin were higher in COVID-19 patients than controls (3716.63 ± 188.36 vs 2590.02 ± 156.51pg/ml, p < 0.001). MDA was higher in COVID-19 patients than controls (10.55 ± 2.45 vs 1.01 ± 0.50 nmole/L, p = 0.001). Residual cardiovascular symptoms at 4 months were associated with oxidative stress markers. Myocardial work efficiency was related with PWV (F=-0.309, p = 0.016) and vWillenbrand (F=-0.541, p = 0.037). Myocardial wasted work was related with PWV (F = 0.255, p = 0.047) and vWillenbrand (F = 0.610, p = 0.016). Conclusions: SARS-CoV-2 may cause vascular dysfunction, followed by a waste of cardiac work, in order to compensate for increased arterial stiffness 4 months after infection.

3.
European Heart Journal Cardiovascular Imaging ; 23(SUPPL 1):i445, 2022.
Article in English | EMBASE | ID: covidwho-1795310

ABSTRACT

Aims: SARS-CoV-2 infection may lead to endothelial and vascular dysfunction. We investigated alterations of arterial stiffness, endothelial coronary and myocardial function markers four months after COVID-19 infection. Methods: In a case-control prospective study, we included 100 patients four months after COVID-19 infection, 50 age- and sex-matched healthy individuals. We measured a) perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced endothelial glycocalyx thickness), b) flow-mediated dilation (FMD), c) coronary Flow Reserve (CFR) by Doppler echocardiography d) pulse wave velocity (PWV) e) global left (LV) and right (RV) ventricular longitudinal strain (GLS), f) malondialdehyde (MDA), an oxidative stress marker, von-Willenbrand factor and thrombomodulin as endothelial biomarkers. Results: COVID-19 patients had lower CFR and FMD values than controls (2.39 ± 0.39 vs 3.31 ± 0.59, p = 0.0122, 5.12 ± 2.95% vs 8.12 ± 2.23%, p = 0.006 respectively). Compared to controls, COVID-19 had greater PBR5-25 (2.11 ± 0.14μm vs 1.87 ± 0.16μm, p = 0.002), higher PWV (PWVc-f 12.32 ± 2.44 vs 10.11 ± 1.85 m/sec, p = 0.033) and impaired LV and RV GLS (-19.11 ± 2.14% vs -20.41 ± 1.61%, p = 0.001 and -16.45 ± 3.33% vs -20.11 ± 2.48%, p < 0.001). MDA and thrombomodulin were higher in COVID-19 patients than controls (10.55 ± 2.45 vs 1.01 ± 0.50 nmole/L, p = 0.001 and 3716.63 ± 188.36 vs 2590.02 ± 156.51pg/ml, p < 0.001). Residual cardiovascular symptoms at 4 months were associated with oxidative stress and endothelial dysfunction markers. Conclusions: SARS-CoV-2 may cause endothelial and vascular dysfunction linked to.

4.
European Heart Journal ; 42(SUPPL 1):61, 2021.
Article in English | EMBASE | ID: covidwho-1554201

ABSTRACT

Background/Introduction: COVID-19 infection has been associated with increase arterial stiffness, endothelial dysfunction, and impairment in coronary and cardiac performance. Inflammation and oxidative stress have been suggested as possible pathophysiological mechanisms leading to vascular and endothelial deregulation after COVID-19 infection. Purpose: The objective of our study is to evaluate premature alterations in arterial stiffness, endothelial, coronary, and myocardial function markers four months after SARS-CoV-2 infection. Methods: We conducted a case-control prospective study, including 70 patients four months after COVID-19 infection, 70 age- and sex-matched untreated hypertensive patients (positive control) and 70 healthy individuals. We measured a) perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced endothelial glycocalyx thickness b) flow-mediated dilation (FMD), c) coronary Flow Reserve (CFR) by Doppler echocardiography d) pulse wave velocity (PWV) and central systolic (SBP) e) global LV longitudinal strain (GLS) by speckle tracking imaging and f) malondialdehyde (MDA) as oxidative stress marker. Results: COVID-19 patients had similar CFR and FMD with hypertensives (2.48±0.41 vs 2.58±0.88, p=0.562, 5.86±2.82% vs 5.80±2.07%, p=0.872 respectively), but lower CFR and FMD than controls (3.42±0.65, p=0.0135 9.06±2.11%, p=0.002 respectively) Both COVID-19 and hypertensive group had greater PBR than controls (PBR5-25: 2.07±0.15 μm and 2.07±0.26 μm p=0.8 vs 1.89±0.17 μm, p=0.001). COVID-19 patients and hypertensives had higher PWV and central SBP than controls (PWVcf 12.09±2.50 and 11.92±2.94, p=0.7 vs 10.04±1.80 m/sec, p=0.036). COVID-19 patients and hypertensives had impaired values of GLS compared to controls (-19.50±2.56% and -19.23±2.67%, p=0.864 vs -21.98±1.51%, p=0.020). Increased PBR5-25 was associated with increased SBP central which in turn was related with impaired GLS (p<0.05). MDA was found increased in COVID-19 patients compared to both hypertensives and controls (10.67±2.75 vs 1.76±0.30, p=0.003 vs 1.01±0.50 nmole/L, p=0.001). Conclusions: SARS-CoV-2 may cause impaired coronary microcirculatory, endothelial and vascular deregulation which remain four months after initial infection and are associated with reduced cardiac performance. The 10-fold increase of MDA compared to healthy individuals four months after COVID-19 infection indicate oxidative stress as possible pathophysiological mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL